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A practical way to calculate local quantum stress within the framework of stress density developed by
Filippetti and Fiorentini �Phys. Rev. B 61, 8433 �2000�� is proposed and applied to Al �111� surfaces. Through
detailed analysis of the gauge-dependent term in the kinetic stress density derived from the kinetic-energy
density, it has been shown that the local stress components can be uniquely obtained by defining appropriate
local regions where the gauge-dependent term integrates to zero. In Al �111� surface-slab calculations imple-
mented by the projector-augmented-wave method, we have observed Friedel-type oscillation of the layer-by-
layer stress, which reveals clear correlation with charge redistribution at the surface.
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I. INTRODUCTION

A material under strain shows different physical proper-
ties from those of the bulk equilibrium state. For example, a
semiconductor under strain shows a larger or smaller band
gap.1–3 Correlation between strain and magnetic anisotropy4,5

or polarization6,7 in some materials is often quoted as another
example. In a microscopic view, the change in the physical
properties is attributed to the variations in electronic struc-
ture and atomic arrangement induced by strain. As the basic
susceptibility for the strain, stress can be defined as the total-
energy derivative with respect to strain. Because the stress is
zero when the equilibrium structure is unstrained, the stress
allows us to know whether the atomic structure is strained or
not without the knowledge about the stable structure. Stress
can be also utilized to know the effect of defected structures
�e.g., surface and interface� on the bulk state. In recent stud-
ies, there have been growing interests in estimating local
stress at surfaces, interfaces, and grain boundaries in view of
experiment and simulation.8–12 Such local stress can be also
defined as the local contribution to the total-energy deriva-
tive with respect to strain.

In the long history of attempts at estimating quantum
stress,13 the practical implementation of ab initio stress cal-
culations was started by the works of Nielsen and
Martin.14,15 They derived quantum total stress from the varia-
tion in density-functional total energy with respect to uni-
form strain of crystals or repeated cell systems. The total
stress is a cell-averaged value and is frequently employed in
cell-size relaxation in conventional ab initio calculations.
Besides the importance of the total quantum stress, local
quantum stress is also a remarkable concept to deal with
defects, surfaces, or interfaces, for example, for which one
has to analyze separate contributions to the total stress of the
system from defected and bulk regions. Filippetti and
Fiorentini16 proposed the concept of stress density and ap-
plied it to surface and interface problems. In analogy with
the energy density proposed by Chetty and Martin,17 the
stress density is defined as a stress-field tensor distributed in
a unit cell and integrates to the total stress. They showed that

the stress density can appropriately express the stress state in
the vicinity of surfaces or interfaces. Apart from the stress
density defined by homogeneous strain of supercell configu-
rations, more general stress-field tensors defined by the local
balance relation or by inhomogeneous strain have been also
proposed.18–21 Regardless of the definition of stress-field ten-
sor, there is an intrinsic shortcoming in quantum stress-field
tensor: it is nonuniqueness. For example, in the case of the
stress density, any function which integrates to zero over the
cell can be added to the stress density because the density is
defined as an integrand which integrates to the total stress as
in the case of the energy density. This means that the stress
density can only be specified up to a gauge term, hence this
problem is called as a gauge-dependent problem.21,22 All the
quantum stress-field tensors proposed so far suffer this prob-
lem, which prevents one to use the tensor as a well-defined
physical quantity. In order to average out the gauge depen-
dency, a macroscopic averaging16,17,23 or an integration
scheme24 can be applied as in the same way applied to the
energy density. However, it is difficult to define period
lengths or partial regions in the case that the electronic struc-
ture or the atomic arrangement is largely changed from its
bulk state. To apply the concept of the stress density or other
stress-field tensors to the estimation of local stress in various
complex systems, a robust scheme to average out the gauge-
dependent term is required.

The purpose of this paper is to develop a practical way to
calculate more reliable local quantum stress by using the
stress density on the basis of plane-wave pseudopotential
techniques.25–27 To this end, we propose a scheme to remove
the effects of the gauge-dependent terms and related ambi-
guities. When considering that the stress density can be de-
rived from the strain derivative of the integrated form of the
energy density, it is natural to attribute the gauge dependence
of the stress density to that of the energy density. Hence, we
start off by specifying the gauge-dependent term in the en-
ergy density and particularly consider the nonuniqueness
problem in the kinetic-energy contribution. The derived
gauge-dependent term in the kinetic stress density has a simi-
lar form to the one proposed by Rogers and Rappe.21 We also
observe that some ambiguities are contained in the nonlocal
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pseudopotential and electrostatic terms while these are local-
ized in the vicinity of the atomic cores. To obtain the definite
local stress values, we define local regions partitioned in the
supercell, where the gauge-dependent terms are integrated to
be zero and the other ambiguities are averaged out.

In this study, the stress-density calculation is implemented
by the projector-augmented-wave �PAW� method27,28 instead
of the ultrasoft pseudopotential �USPP� method26 employed
by Filippetti and Fiorentini while the present scheme can be
generally used in various pseudopotential methods. The
PAW-based stress density was successfully applied to the in-
vestigation of the microscopic distributions of electric-field-
induced stress in diamond/cBN superlattices.29 In order to
show the validity of the present scheme, we perform the
layer-by-layer stress calculations of Al �111� surfaces, which
are compared with previous theoretical results.30–32 We found
remarkable correlation between the stress distribution and
the charge redistribution at the Al surface.

This paper is organized as follows. In Sec. II, the detailed
formulation of the energy density and the stress density is
analyzed and their gauge-dependent terms are specified.
Then we describe the integration scheme to remove the
gauge dependency and related ambiguities for the local stress
calculations. In Sec. III, the present scheme is applied to the
Al �111� surface.

II. SCHEMES

A. Local stress and gauge-dependent problem

In estimation of local stress in a certain atomic system, a
stress-field tensor is required as a distributed quantity over
the system. We employ the stress density proposed by Filip-
petti and Fiorentini.16 The stress density is defined as an
integrand of the macroscopic stress proposed by Nielsen and
Martin,14

�̄�� =
1

V
�

V

����r�dr , �1�

where V is the whole region of the supercell.33 The macro-
scopic stress is defined as the variation in the total energy Etot
with respect to uniform strain of a repeated cell system as

�̄�� =
1

V

�Etot

����

. �2�

Then the local stress can be defined as

�̄���i� =
1

Vi
�

Vi

����r�dr , �3�

where Vi is the ith partial region. Through Eqs. �2� and �3�,
the local stress is defined as the energy response of a partial
region against a uniform strain tensor ���. On the other hand,
the energy density is defined as an integrand of the total
energy,17

Etot = �
V

etot�r�dr . �4�

Since the energy density and the stress density are defined as
an integrand, an arbitrary function term �gauge-dependent
term� which integrates to zero over the whole cell can be
added to the densities. This arbitrariness is inevitable and
prevents one from using the energy density or the stress den-
sity as a well-defined physical quantity. However, any func-
tion which integrates to zero may not be necessarily included
in the energy and stress densities. In this study, we assume
that the arbitrary function should be physically motivated.18

From Eqs. �1�, �2�, and �4�, the stress density should be
derived from the strain derivative of the integration form of
the energy density. This derivation is performed by scaling
procedure given in the works of Nielsen and Martin.14,15 De-
tailed procedure of the derivation is given for the kinetic and
exchange-correlation components in Appendices A and B, as
examples, where a specific form of each stress-density com-
ponent can be obtained from the corresponding energy den-
sity component via the scaling procedure. Thus a gauge-
dependent term in the stress density can be assumed to be
originated from that in the energy density.

B. Gauge dependence of energy density

The total-energy density in the density-functional theory
�DFT� of pseudopotential formalism is comprised of the fol-
lowing components:

etot�r� = ekin�r� + ees�r� + enl�r� + exc�r� , �5�

where ekin is the kinetic-energy density, ees is the electrostatic
energy density, enl is the nonlocal pseudopotential energy
density related to pseudopotential methods, and exc is the
exchange-correlation energy density. Here the form of each
component is described basically according to Chetty and
Martin.17

The kinetic-energy density ekin can be defined in the fol-
lowing two expressions.34 The symmetric form is

ekin,S�r� =
1

2�
i

f i � �i
��r� · ��i�r� �6�

and the asymmetric form is

ekin,AS�r� = −
1

2�
i

f i�i
��r��2�i�r� , �7�

where �i is a valence wave function and f i is an occupation
number. Although both forms give the same kinetic-energy
value when they are integrated over the whole cell, their
distributions are distinctly different from each other. Yang et
al.35 discussed the uniqueness of the kinetic-energy density
based on its asymptotic behavior at an infinite distance and
proposed the following form as the kinetic-energy density:

SHIIHARA, KOHYAMA, AND ISHIBASHI PHYSICAL REVIEW B 81, 075441 �2010�

075441-2



ekin�r� = ekin,S�r� + ��2	e�r� , �8�

where 	e is the valence electron density and � is an arbitrary
constant. The derivation of Eq. �8� from Eqs. �6� and �7� is
shown in Appendix A. When � is −1 /4, ekin turns to be
ekin,AS. Since the Laplacian of the electron density integrates
to zero, the Laplacian term is the gauge-dependent term. We
employ Eq. �8� as the kinetic-energy density because the
gauge-dependent term is explicitly included in this form.

The electrostatic energy density ees represents electro-
static interactions among valence electrons and ions. In order
to break the electrostatic energy density down into long-
range and short-range parts, a fictitious ionic charge density
	ion is introduced as

	ion�r� = − �



Z


����
�3
exp�−

	r − R
	2

�

2 
 , �9�

where �
 represents a Gaussian width set for of an atom 
.
For simplicity, the same value �c is employed for every
atom. In the present study, the sign of the charge is positive
for the electron and negative for the ionic core. A total charge
	tot is also defined by

	tot�r� = 	e�r� + 	ion�r� . �10�

For these charge densities, their corresponding electrostatic
potentials, vtot, ve, and vion can be defined through the Pois-
son equation. By using these potentials, we define the elec-
trostatic energy density as

ees�r� =
1

8�
� vtot�r� · �vtot�r� + vloc� �r�	e�r�

+
1

2 �

�
�

�r − R
�
Z
Z
�

	R
 − R
�	

� �erfc� 	R
 − R
�	
�2�c

� −
1

�2�
�



�r − R
�
Z


2

�


,

�11�

where vloc� is a short-range local potential given by

vloc� �r� = vloc�r� − vion�r� . �12�

The electrostatic interactions among valence electrons and
ions are included in the first term of Eq. �11� as the interac-
tions among valence electrons and the fictitious ionic charges
of Eq. �9�, and thus the second term is generated as the
correction for the replacement of the local pseudopotentials
vloc by vion. The third term is an overlap sum and the fourth
term represents self-interaction of the pseudoionic cores.
These two terms are corrections for the replacement of the
electrostatic interactions among ionic point charges by the
interactions among the fictitious ionic charges in the first
term of Eq. �11� and are described as distribution to each
ionic core by using  functions. As a result, only the first
term of Eq. �11� is long ranged and the others are short

ranged. Mathematically there are two types of expressions
for the electrostatic energy density as in the case of kinetic-
energy density. The first is the Maxwell form expressed as a
dot product of gradient vectors of electrostatic potential and
the second is a form expressed as a product of electrostatic
potential and its corresponding charge density.36 Here we
assume the Maxwell form is the unique expression because it
can correctly represent the energy density in not only static
problems but also dynamic problems.36 In Eq. �11�, only the
first term has the Maxwell form and the others do not while
this ambiguity will be settled because they are localized in
atomic sites.

The nonlocal pseudopotential energy density enl is local-
ized inside the atomic sphere and is described by using a 
function as

enl�r� = �



�r − R
�Enl,
, �13�

where Enl,
 is the nonlocal pseudopotential energy per atom
represented by using nonlocal operator v̂nl,
 as

Enl,
 = �
i

f i� � �i
��r��v̂nl,
�r� − R
,r� − R
�

� �i�r��dr�dr�. �14�

The form of Enl,
 depends on the choice of pseudopotential
schemes. The detailed form in the PAW scheme is given in
Appendix C. Several ambiguous terms can appear in it con-
cerning the kinetic and electrostatic energies while we need
not to consider such ambiguity owing to its locality. Finally,
the form of the exchange-correlation energy density exc de-
pends on used functional forms of local-density approxima-
tion �LDA� or generalized gradient approximation �GGA�.
The definition problem of exc is identical to seeking for the
exact exchange-correlation functional, which is beyond the
aim of the present study. Hence we ignore the gauge-
dependent problem in the exchange-correlation energy den-
sity.

C. Gauge dependence of stress density

The gauge-dependent term in the stress density is attrib-
uted to that in the energy density. In the preceding section,
the gauge-dependent term is explicitly specified in the
kinetic-energy density but not so in the other energy densi-
ties. The reason is summarized as follows. First, we can se-
lect the Maxwell energy density as the unique expression of
the electrostatic energy density. Second, the gauge depen-
dence on the localized energy densities such as nonlocal
pseudopotential energy density can be removed by integra-
tion in each atomic site. And third, we do not deal with the
gauge-dependent term in the exchange-correlation energy
density. Here we show the expression of the stress density
derived from the energy density and examine the gauge-
dependent problem.
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The stress density is comprised of the following
components:37

����r� = �kin,���r� + �es,���r� + �nl,���r� + �xc,���r� ,

�15�

where �kin is the kinetic stress density, �es is the electrostatic
stress density, �nl is the nonlocal stress density related to the

pseudopotential methods, and �xc is the exchange-correlation
stress density. The kinetic stress density �kin is derived from
Eqs. �6� and �8� as

�kin,���r� = − �
i

f i���i�r����i�r� − 2�
�

�r�

�	e�r�
�r�

.

�16�

The detailed derivation is given in Appendix A. The second
term of Eq. �16� is the gauge-dependent term of the kinetic
stress density. The electrostatic stress density �es is derived
from Eq. �11� as

�es,���r� = − ��

1

8�
� vtot�r� · �vtot�r� +

1

4�
��vtot�r���vtot�r� + ���	e�r� +

�	e�r�
����


 · vtot�r� +
�c

2

4
���	ion�r���vtot�r�

+ ��vtot�r���	ion�r�� + ��vloc� �r�	e�r� +
�	e�r�
����

vloc� �r� +
�vloc� �r�

����

	e�r� − �

�
�

�r − R
�Z
Z
��R
 − R
����R


− R
��� � � 1

2	R
 − R
�	
3erfc� 	R
 − R
�	

�2�c
 +

1
�2��c	R
 − R
�	

2
exp�−

	R
 − R
�	
2

2�c
2 
 . �17�

The first four terms on the right-hand side of Eq. �17� come
from the first term on the right-hand side of Eq. �11�. The
fifth, sixth, and seventh terms come from the second term of
Eq. �11�. The last term is related to the overlap sum. The
self-interaction term does not appear because the self-
interaction energy does not change under uniform deforma-
tion. It should be noted that the terms which come from the
short-range terms of the electrostatic energy density are con-
cerned with the ambiguity while these are localized in the
atomic sites as in the case of the electrostatic energy density.

The nonlocal pseudopotential term �nl is given as

�nl,���r� = �



�r − R
�
�

����

Enl,
. �18�

The practical form in the PAW method appears in Appendix
C. This stress component is localized at the atomic sites. The
exchange-correlation stress density �xc is given by

�xc,���r� = ��exc�r� +
�exc

�	e

�	e

����

+
�exc

��	e
·
��	e

����

. �19�

Finally, the pressure distribution p�r� can be also defined by
using the stress density as

p�r� =
1

3 �
�=1

3

����r� . �20�

The gauge-dependent term in the kinetic stress density de-
scribed above is similar to the one proposed by Rogers and
Rappe21 or Godfrey19 in spite of the difference in the formu-

lation. According to the analysis of Godfrey, the symmetric
and asymmetric kinetic stress forms linked via the parameter
� exhaust the physically reasonable gages. While Rogers and
Rappe limit the range of parameter � in Eq. �8� from 0 to
−1 /4, we do not limit the range of � because any value of �
is acceptable according to the work of Yang et al.35 As re-
gards the electrostatic part of the stress field, two stress
forms have been considered as physically reasonable pos-
sible gauges: the Maxwell stress14,38 and the form proposed
by Kugler.19,39,40 Ziesche et al.41 attributed this ambiguity to
that of the electromagnetic energy density. In the present
study, the Maxwell stress density derived from the Maxwell
energy density is taken to be the unique electrostatic stress
density because the Maxwell energy density is assumed to be
the unique one. This treatment of the electrostatic stress field
coincides with the work by Rogers and Rappe. In our formu-
lation of the stress density, ambiguous terms can be included
in the electrostatic and nonlocal pseudopotential stress den-
sities while this problem will be settled by the localization of
these terms.

x

y

z

FIG. 1. �Color online� Slab model of the Al �111� surface con-
sisting of ten atomic layers. Side view �left� and top view �right�.
Solid lines represent the boundaries of periodic supercells and ver-
tical broken lines represent the partitioning planes for the local
stress calculation.
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D. Gauge-independent local stress

To remove the gauge-dependent term, we employ the in-
tegration scheme. The local stress should be uniquely ob-
tained by integrating the stress density within a certain par-
tial region where the gauge-dependent term integrates to
zero. Here we show how to divide the whole cell into such
partial regions. First, for such a partial region Vi, the gauge-
dependent term in Eq. �16� should integrate to zero as

���� �i� =
1

Vi
�

Vi

�

�r�

�	e�r�
�r�

dr = 0. �21�

The volume integral ���� over an ith partial region can be
transformed to the surface integral as

���� �i� =
1

Vi
�

Si

�	e�r�
�r�

e� · ndS = 0, �22�

where e� is a unit vector codirectional with the � axis and n
is a surface normal. Thus the partial regions have to be par-
titioned by the boundaries satisfying the condition of Eq.
�22�. Second, such boundaries should be selected so that
atomic cores are contained inside the partial regions due to
the ambiguity problem in the electrostatic and nonlocal
pseudopotential components. The ambiguity of the short-
range terms other than those expressed by  functions in the
electrostatic stress density can be settled by localizing these
terms at the atomic sites via a proper Gaussian width of the
fictitious ionic charge density.

We apply the present scheme to surface-slab calculations.
We deal with an Al �111� slab as shown in Fig. 1. The par-
titioning planes parallel to the surface plane �x-y plane� are
set between the atomic layers �ALs�, resulting in a one-
dimensional problem. The local stress is defined in each par-
tial region surrounded by the partitioning planes, which
means that the macroscopic stress is decomposed into the
layer-by-layer stress. In the present case, the integration
scheme can be simplified because the conditions of Eq. �22�
are automatically satisfied except for �zz� due to the period-
icity on the x-y planes: only �zz� is gauge dependent in the
layer-by-layer decomposition. The condition to make �zz�
gauge-independent quantity turns to be

�
Si

�	e�r�
�z

dxdy = �
Si+1

�	e�r�
�z

dxdy , �23�

where Si and Si+1 indicate ith and �i+1�th partitioning planes
to satisfy the condition of the flux of the electron density.

E. Computational details

The present scheme was applied to the Al �111� surface
using the PAW method27,28 with our in-house ab initio code
QMAS �Quantum MAterials Simulator�.29 We use GGA �Ref.
42� for the exchange-correlation functional. Gaussian smear-
ing method43 with a width of 0.01 eV is employed to intro-
duce partial occupancies. High numerical accuracy is re-
quired to obtain a well-converged stress value. The k-point
mesh in the full Brillouin zone was 16�16�16 for the fcc
conventional cell and 32�32�2 for the surface and bulk

supercells. The cutoff energy for the valence wave function
was set to 544 eV in all the calculations. These conditions
can provide a well-converged total energy within 1 meV/
atom. The lattice parameter of the bulk fcc Al was optimized
by using the conventional cell, resulting in 4.033 Å �the ex-
perimental value of 4.05 Å �Ref. 44��, which is used for the
x-y dimensions of the slab supercell. The thickness of a
vacuum region was set to be more than 13.97 Å. The atomic
positions were relaxed in z direction and the maximum
Hellmann-Feynman force was converged to less than 2.6
�10−3 eV /Å.

For the local stress calculation of the Al �111� surface
slab, the flux of the electron density is calculated after ob-
taining the stable atomic and electronic structures as shown
in Fig. 2. The partitioning planes are determined so as to
satisfy the conditions of Eq. �23� and to include atomic
spheres inside each region. The stress density ��� is inte-
grated over each region. First, the density is integrated in the
x-y planes, where first-order Newton-Cotes integration
scheme is employed. This is accurate enough because the
error of numerical integration is canceled due to its period-
icity in the x and y directions. Then the planar-integrated
stress is integrated along z axis over each partial region. This
integration along z axis requires higher-order numerical ac-
curacy due to arbitrary positions of the partitioning planes
and we use Gauss-Legendre numerical scheme with six-
order interpolation. Finally we obtain the layer-by-layer
stress via dividing the integrated value by the volume of each
partial region as Eq. �3�. Alternatively, we express the local
stress by the gross integrated value in each region without
the division by Vi, so as to prevent the effects of ambiguous
definition of the volume of the top surface region. Thus the
layer-by-layer stress is expressed in unit of eV/AL in a simi-
lar way to Ref. 29.

(a)

(c)

(b)

FIG. 2. �a� Contour plots of the valence electron density in the
ten-layer slab of the Al �111� surface; �b� planar-integrated valence
electron-density distribution; and �c� flux distribution of the valence
electron density. Vertical broken lines represent the partitioning
planes. A horizontal dotted line represents the line where the flux is
zero.
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III. RESULTS AND DISCUSSION

A. Al fcc (111) surface with ten layers

Figure 3 shows the layer-by-layer stress obtained by the
present scheme. As discussed in the previous section, �zz is
only a gauge-dependent component. The kinetic gauge-
dependent component in Eq. �16� integrated to be vanish-
ingly small, 10−7 eV /AL for �zz in each region, indicating
that the partitioning planes are properly set. Because of the
free atomic relaxation along z axis, �zz for each layer is
nearly zero. The distributions of �xx and �yy are identical,
which means that the layer-by-layer stress parallel to the sur-
face is isotropic due to the hexagonal symmetry of the Al
�111� plane.32 We found layer-by-layer oscillating behavior
in �xx and �yy as reported by Feibelman.30 In Fig. 4, we
compare the in-plane layer-by-layer stress obtained in the
nine-layer slab with the results of Ref. 29. The agreement is
rather good in spite of different DFT functionals �LDA in
Ref. 29� and different lattice constants. In Ref. 29, the con-
tributions to the strain derivative of the total energy are ob-
tained as decomposed into the contribution at each atomic
layer by using the local atomic-orbital basis scheme. The
present scheme has more generality and accuracy than the
scheme of Ref. 29. The latter is restricted to the local atomic-
orbital basis while our scheme can be implemented by any
basis functions basically. The plane-wave basis is superior to
the local atomic-orbital basis in accuracy in dealing with
metallic surfaces or interfaces if the cutoff energy is large
enough.45 Although the distributions in the top and second
layers are very similar in Fig. 4, the distributions in the

middle layers are apparently different: the layer-by-layer
stress obtained in the present study is still oscillating even in
the middle layer. It was reported that the atomic relaxation
gives up to 0.5% expansion of the interlayer spacing between
the middle layers.46 Nevertheless, the comparison of the
layer-by-layer stress between the relaxed and unrelaxed sur-
faces shown in Fig. 4 indicates that the layer-by-layer stress
oscillation in the middle layers does not come from this ex-
pansion of the interlayer spacing. While the stress behavior
inside a surface cannot be experimentally observed, this os-
cillation can be reasonably explained as follows. The fcc Al
is reported as a simple metal with rather free-electronlike
features,32 thus we can expect a simple correlation between
stress and charge redistribution at the surface.8,10 For each Al
atom on the �111� plane, six first neighbors out of 12 first
neighbors are located on the same �111� plane and thus the
charge redistribution on each �111� atomic plane greatly af-
fects the strength of in-plane bonds. Then the variation in the
bonding strength should result in the layer-by-layer stress
distribution. Figure 5 shows the difference in the planar-
integrated electron density between the ten-layer surface slab
and the Al bulk. The distribution of the layer-by-layer in-
plane stress in Fig. 3 reveals the apparent resemblance with
the distribution of the difference of the planar-integrated
charge at the atomic-plane positions shown in the inner panel
of Fig. 5. The oscillation of the charge at the atomic plane
indeed exists beyond the third layer from the surface.

Figure 6 shows the valence electron-density redistribu-
tions on the top and second layers of the ten-layer slab. The
significant charge increase at the top �111� plane is caused by
the less coordination, which is consistent with previous ab
initio results revealing remarkable charge redistribution at
less-coordinated atoms around point defects, surfaces, and
grain boundaries in Al.47–50 This should be general nature of
Al with high density of s and p electrons. Then there occurs
the remarkable charge decrease at the second �111� plane and
the oscillation inside the slab occurs as general Friedel-type
behavior of metallic electrons. The strengthening and weak-
ening of the in-plane bonds, caused by the in-plane charge-

FIG. 3. Layer-by-layer stress distribution for the ten-layer slab
of the Al �111� surface. Lines are a guide for the eyes. �xx and �yy

reveal the same distribution, indicating the isotropic in-plane stress.

FIG. 4. In-plane layer-by-layer stress distribution for the nine-
layer slab of the Al �111� surface. Lines are a guide for the eyes.

FIG. 5. Planar-integrated valence electron-density distribution
of the ten-layer Al �111� surface slab n̄surf and the bulk n̄bulk �outer
panel�. The difference between the two densities n̄diff= n̄surf− n̄bulk at
the atomic-layer positions is plotted in the inner panel. The arrows
with numbers indicate the atomic-layer positions.
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density variation, induce in-plane tensile stress and in-plane
compressive stress, respectively. The change in the in-plane
bond strength cannot change the in-plane interatomic bond
lengths at the surface due to the constraint of the crystal
structure, resulting in the in-plane stress variations.8 It is
quite interesting to see that the peculiar charge redistribution
and oscillation at the Al surface directly induces peculiar
stress distribution, which can be easily clarified by the
present scheme.

B. Al fcc (111) surface with 9–17 layers

The present results indicate that enough thick slabs are
necessary to obtain well-converged surface properties. Fur-
thermore, thin slabs may induce quantum-well states, which
seemed to affect the averaged surface stress depending on
the slab thickness as observed in Mo thin films.51 By calcu-
lating the layer-by-layer stress, one can easily know how
�and how far� the stress variation exists inside a surface.
Figure 7 shows the results of the layer-by-layer stress calcu-
lations with different slab thickness. In all cases, �zz is nearly
zero, the in-plane stress is isotropic, and the in-plane layer-
by-layer stress reveals oscillatory reduction from the surface
layer to the slab center. In Ref. 46, the calculated properties
of the Al �111� surface such as surface energies, work func-
tions, interlayer relaxations, and the densities of states at the
Fermi level clearly reveal the oscillation against the slab
thickness. This is obviously attributed to a Friedel-type effect
in the vicinity of the surface.52 Even in the case of the 17-
layer slab, �xx and �yy are still oscillating at the slab center.
It seems that the Friedel-type effect induced by the surface
extends to a depth of more than eight layers, indicating the
necessary slab thickness for correct surface calculations.

IV. CONCLUSION

A practical scheme to calculate local quantum stress
within the framework of the stress density developed by Fil-
ippetti and Fiorentini was described. The gauge-dependent
terms and related ambiguities in the stress density were
specified, and the conditions were given for defining the lo-
cal regions where the local stress components are uniquely

obtained. The layer-by-layer stress of the Al �111� surface
calculated by the present scheme is physically valid, reflect-
ing the variation in atomic bonding caused by the remarkable
charge redistribution and oscillation at the surface. The long-
range oscillatory reduction in the surface stress indicates the
necessity of enough slab thickness in surface calculations. To
apply the present scheme to wide-ranged systems, we have
to investigate the numerical techniques to define general
three-dimensional integration regions and to perform the
stress-density integration in such regions, in contrast to
rather simple one-dimensional integration of the present ex-
ample. In spite of such difficulties, the present scheme is a
promising tool to deal with stress-mediated phenomena or

(b)

Surface

Bulk

Surface

Bulk

Top layer Second layer

(a)

0.0300

0.0350

0.0325

)

FIG. 6. �Color online� Valence electron-density distributions on
�a� the top atomic layer and �b� the second atomic layer in the
ten-layer Al �111� surface slab. Distributions on the corresponding
layers of the Al bulk are also shown for comparison. The magnitude
of the density is expressed by in the color �or gray� scale and the
contour so that the bonding charge can be observed.

FIG. 7. Layer-by-layer stress distributions for the Al �111� sur-
face slabs with 9–17 layers. Lines are a guide for the eyes. In every
case, �xx and �yy are equal. The layer-by-layer stress shows oscil-
latory reduction toward the center of the slab.

Ab INITIO LOCAL STRESS AND ITS… PHYSICAL REVIEW B 81, 075441 �2010�

075441-7



local mechanical properties of defects, surfaces, interfaces,
and nanostructures from the behavior of valence electrons.53

ACKNOWLEDGMENTS

This work was partly supported by Next Generation
Super-Computing Project, MEXT, Japan. We are grateful to
T. Tamura, S. Tanaka, and K. Terakura for helpful comments
and discussions.

APPENDIX A: PROOF OF EQS. (8) and (16)

Equation �8� on the relation between the symmetric and
asymmetric forms of the kinetic-energy density is proved as
follows: �2	e�r� in Eq. �8� is expressed as

�2	e�r� = �
i

f i�
2��i

��r��i�r�� = �
i

f i� �2

�x2 ��i
��r��i�r��

+
�2

�y2 ��i
��r��i�r�� +

�2

�z2 ��i
��r��i�r��� , �A1�

where f i is the occupancy of an eigenstate �i. Each term is
expressed as

�2

�x2 ��i
��r��i�r�� =

�2�i
��r�

�x2 �i�r� + 2
��i

��r�
�x

��i�r�
�x

+ �i
��r�

�2�i�r�
�x2 . �A2�

Thus

�2	e�r� = �
i

f i��i�r��2�i
��r� + 2 � �i

��r� · ��i�r�

+ �i
��r��2�i�r�� = 2�

i

f i���i
��r� · ��i�r�

+ �i
��r��2�i�r�� . �A3�

Here we used the theorem that both �i and �i
� are the eigen-

states with the same energy and occupancy by the time-
reversal symmetry. By Eq. �A3�, we get the final relation as

−
1

2�
i

f i�i
��r��2�i�r� =

1

2�
i

f i � �i
��r� · ��i�r� −

1

4
�2	e�r� .

�A4�

If we start from the left-hand side of Eq. �A4�, the right-hand
side can be also obtained via Green’s theorem and Gauss’s
theorem as argued in an early paper of Slater.34 The second
term of the right-hand side is the gauge-dependent term caus-
ing the indefinite nature.

In order to prove Eq. �16�, we use the following equation:

����	e�r� = �
i

f i
�2

�r� � r�

��i
��r��i�r��

= �
i

f i� �2�i
��r�

�r� � r�

�i�r� +
��i

��r�
�r�

��i�r�
�r�

+
��i

��r�
�r�

��i�r�
�r�

+ �i
��r�

�2�i�r�
�r� � r�




= �
i

f i�2�i
��r�

�2�i�r�
�r� � r�

+ 2
��i

��r�
�r�

��i�r�
�r�



= 2�

i

f i��i
��r������i�r� + ���i

��r����i�r�� .

�A5�

In the third line, we used the theorem that both �i and �i
� are

the eigenstates with the same energy and occupancy by the
time-reversal symmetry. The following relation between the
symmetric and asymmetric forms of the kinetic stress density
is obtained by rewriting Eq. �A5�:

�
i

f i�i
��r������i�r� = − �

i

f i���i
��r����i�r�

+
1

2
����	e�r� . �A6�

The second term in Eq. �A6� is the gauge-dependent term,
which is expressed generally using the parameter � in Eq.
�16� similarly to Eq. �8�.

Then we derive the expression of the kinetic stress density
in Eq. �A6� from the kinetic-energy density in Eq. �A4�. The
asymmetric kinetic energy is expressed by the integration of
the asymmetric kinetic-energy density as

Ekin,asy = −
1

2�
i

f i� �i
��r��2�i�r�dr . �A7�

The stress density is derived by the scaling procedure given
in the works of Nielsen and Martin.14,15 The energy of the
system with infinitesimal homogeneous strain is given as

Ekin,asy
� = −

1

2�
i

f i� �i
���r����2�i

��r��dr�

= −
1

2�
i

f i� �1 − �
�

����i
��r�

� ��2 − 2�
��

��������i�r��1 + �
�

���dr

� −
1

2�
i

f i� �i
��r�

� ��2 − 2�
��

��������i�r�dr , �A8�

where the following relations14 as

r� = �I + ε� · r ,

�i
��r�� = det	I + ε	−1/2�i�r� ,

det	I + ε	�1 � 1 � �
�

���

are used. Then the derivative of the kinetic energy by the
strain tensor is given as a remaining first-order coefficient of
the strain tensor in the expansion of Eq. �A8� as
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�Ekin,asy

����

� lim
�→0

�Ekin,asy
�

����

= �
i

f i� �i
��r������i�r�dr .

�A9�

The final form of Eq. �A9� shows that the left-hand side of
Eq. �A6� is indeed the asymmetric kinetic stress density.

For the symmetric kinetic stress density from the symmet-
ric kinetic-energy density, we consider the strained symmet-
ric kinetic energy as

Ekin,sym
� =

1

2�
i

f i� ���i
���r�� · ���i

��r��dr�

�
1

2�
i

f i� �1 − �
�

������i
��r� · ��i�r�

− 2�
��

������i
��r����i�r�
�1 + �

�

���dr

�
1

2�
i

f i� ���i
��r� · ��i�r�

− 2�
��

������i
��r����i�r�
dr . �A10�

In a similar way to Eq. �A9�, the strain derivative of the
energy is obtained as

�Ekin,sym

����

= − �
i

f i� ���i
��r����i�r�dr . �A11�

The final form indicates the symmetric kinetic stress as the
right-hand side of Eq. �A6�.

In addition, the relation between the second term of the
right-hand side of Eq. �A6� and that of Eq. �A4� can be
explained as follows. The strained energy component of the
Laplacian of the electron density in Eq. �A4� is given as

�−
1

4
� �2	e�r�dr
�

= −
1

4
� ��2	e

��r��dr�

= −
1

4
� ��2 − 2�

��

���

�

�r�

�

�r�


� �1 − �
�

���	e�r��1 + �
�

���dr

� −
1

4
� ��2 − 2�

��

�������	e�r�dr ,

�A12�

where the strained charge density14

	e
��r�� = det	I + ε	−1	e�r� �A13�

is introduced. Then its strain derivative is given as

�

����
�−

1

4
� �2	e�r�dr =

1

2
� ����	e�r�dr . �A14�

This expression is equivalent to the second term of the right-
hand side of the Eq. �A6�.

APPENDIX B: EXCHANGE-CORRELATION STRESS
DENSITY

The exchange-correlation stress density is derived from
the exchange-correlation energy density exc�r�
=exc�	e�r� ,�	e�r�� as a functional of the electron density
and its gradient in GGA. The exchange-correlation energy
per supercell is

Exc =� exc�	e�r�,�	e�r��	e�r�dr . �B1�

The strained exchange-correlation energy is obtained in a
similar way in Appendix A,

Exc
� =� exc

� �r��dr� =� �exc�r� + �
��

���� �exc

�	e

�	e

����

+
�exc

��	e
·
��	e

����

�1 + �

�

���dr =� �exc�r�

+ �
�

���exc�r� + �
��

���� �exc

�	e

�	e

����

+
�exc

��	e
·
��	e

����

dr .

�B2�

Then its strain derivative is

�Exc

����

=� ���exc�r� +
�exc

�	e

�	e

����

+
�exc

��	e
·
��	e

����

dr .

�B3�

In the case of LDA, the last term of Eq. �B3� vanishes. Then
we obtain

�Exc
LDA

����

=� ���exc�r� − 	e�r�
�exc

�	e

dr . �B4�

The form of Eq. �B4� is identical to that in Refs. 14 and 15.
For the strained forms of electron density and its gradient,
the compensation charge and core-correction charge have to
be dealt with in the PAW scheme. We have to add the con-
tributions of such components, which is practically easily
attained by using the expression in the reciprocal space.

APPENDIX C: PAW EXPRESSIONS OF NONLOCAL
PSEUDOPOTENTIAL TERMS IN THE ENERGY DENSITY

AND STRESS DENSITY

In this paper, all the terms in the energy and stress densi-
ties are expressed by the PAW scheme in contrast to the
norm-conserving pseudopotential �NCPP� method for the en-
ergy density in Ref. 16 and the USPP method for the stress
density in Ref. 15. The PAW expressions of the kinetic, elec-
trostatic, and exchange-correlation terms have similar fea-
tures to those by the USPP or NCPP schemes while the PAW
expressions of the nonlocal pseudopotential terms concern-
ing Eqs. �13�, �14�, and �18� are rather different from those
by the other schemes. Here we show the summary of the
PAW expressions of the nonlocal pseudopotential terms. We
use the PAW formulation and terms similar to those in Ref.
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27. The nonlocal pseudopotential term in the energy density
is expressed as

enl�r� = �
a

�r − Ra��Ea
1 − Ẽa

1� . �C1�

Ea
1 and Ẽa

1 are the total-energy terms inside the atomic radius
of the atom a at the site Ra, expressed by the all-electron
�AE� partial waves �i

a and the on-site AE valence and core
charge densities na

1+nc
a, and expressed by the pseudo �PS�

partial waves ��̃i
a� and the on-site PS valence and compen-

sation charge densities ña
1+ n̂a with the partial core charge ñc

a,

respectively. Ea
1− Ẽa

1 is given as

Ea
1 − Ẽa

1 = �
ij

	ij
a ��i

a	 −
1

2
�	� j

a� + EH�na
1� + �

�a

�H�nzc�na
1dr

+ Exc�na
1 + nc

a� − �
ij

	ij
a ��̃i

a	 −
1

2
�	�̃ j

a� − EH�ña
1 + n̂a�

− �
�a

vloc
a �r��ña

1 + n̂a�dr − Exc�ña
1 + n̂a + ñc

a� . �C2�

	ij
a is the occupancy of the augmentation channel �i , j� at the

atomic site obtained by the projectors �p̃i
a� and the extended

pseudowave functions ��̃kn� as

	ij
a = �

kn

fkn��̃kn	p̃i
a��p̃j

a	�̃kn� . �C3�

The AE and PS on-site charge densities are given by

na
1�r� = �

ij

	ij
a �i

a��r�� j
a�r� �C4�

and

ña
1�r� = �

ij

	ij
a �̃i

a�i�r��̃ j
a�r� . �C5�

The compensation charge density n̂a at the atomic site is
given by

n̂a�r� = �
ij

	ij
a �

lm

Q̂ij,a
lm �r� , �C6�

where

Q̂ij,a
lm �r� = qij,a

lm gl
a�r�Ylm�r̂� . �C7�

qij,a
lm is the moment of Qij

a �r�, which is the charge-density
difference between the AE and PS partial waves for an �i , j�
channel within the augmentation region, expressed as
Qij

a �r�=�i
a��r�� j

a�r�− �̃i
a��r��̃ j

a�r�. gl
a is the compensation

function of the atom a to smoothen the compensation charge.
In this way, n̂a reproduces the correct moments of na

1− ña
1

=�ij	ij
a Qij

a �r�. In Eq. �C2�, EH�n� and Exc�n� are the electro-
static and exchange-correlation energies for the on-site
charge distribution and the bar above each term means that
the integration is performed inside the atomic radius by the
radial grid. vH�nzc� and vloc

a �r� are the electrostatic potential
from the nuclear and core charge and the unscreened atomic
local pseudopotential, respectively. The integration is also
performed inside the atomic radius �the sphere �a�.

The nonlocal pseudopotential term in the stress density is
given as

�nl,���r� = �
a

�r − Ra��
ij
� �	ij

a

����
�Dij,a

1 − D̃ij,a
1 � , �C8�

where

Dij,a
1 = ��i

a	 −
1

2
�2	� j

a� + ��i
a	vH�nzc�	� j

a� + ��i
a	vH�na

1�	� j
a�

+ ��i
a	vxc�na

1 + nc
a�	� j

a� �C9�

and

D̃ij,a
1 = ��̃i

a	 −
1

2
�	�̃ j

a� + ��̃i
a	vloc

a 	�̃ j
a� + ��̃i

a	vH�ña
1 + n̂a�	�̃ j

a�

+ ��̃i
a	vxc�ña

1 + n̂a + ñc
a�	�̃ j

a� + �
�a

�vloc
a + vH�ña

1 + n̂a�

+ vxc�ña
1 + n̂a + ñc

a�� � �
lm

Q̂ij,a
lm �r�dr . �C10�

Dij,a
1 and D̃ij,a

1 are identical to those to appear in the
Hamiltonian.28 All the integrations are performed inside the
atomic radius. vH�n� and vxc�n� are the electrostatic and
exchange-correlation potentials by the on-site charge distri-

bution n. The term
�	ij

a

����
is given in the reciprocal space.
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